

Agilent E4438C ESG Vector Signal Generator

Data Sheet

Notice

Please contact Agilent Technologies for the latest information or check the ESG Web site at www.agilent.com/find/esg

Table of Contents

Introduction	
Key Features	4
Specifications for Frequency and Power Characteristics	
Frequency	5
Sweep modes	
Internal reference oscillator	5
Output power	6
Level accuracy	
Repeatability and linearity	
Spectral purity	10
Specifications for Analog Modulation	12
Frequency bands	12
Frequency modulation	12
Phase modulation	
Amplitude modulation	13
Wideband AM	14
Pulse modulation	
Internal analog modulation source	15
External modulation inputs	15
External burst envelope	15
Composite modulation	16
Simultaneous modulation	16
Specifications for I/Q Characteristics	17
I/Q modulation bandwidth	17
I/Q adjustments	18
Baseband generator [arbitrary waveform mode]	19
Baseband generator [real-time mode]	20
Specifications for Signal Personality Characteristics	21
3GPP W-CDMA	21
IS-95 CDMA	22
cdma2000	22
Enhanced multitone	23
AWGN	23
802.11 WLAN	24
Custom modulation	25
GSM/GPRS	26
EDGE/EGPRS	27
GSM/EDGE base station bit error rate test [BERT]	28
Bit error rate [BER] analyzer	29
General Characteristics	
Operating characteristics	
Inputs and outputs	
Ordering Information	37
Related Literature	38

Introduction

Agilent Technologies E4438C ESG vector signal generator incorporates a broad array of capabilities for testing both analog and digital communications systems. Flexible options provide test solutions that will evaluate the performance of nearly all current and proposed air interface standards. Many test functions can be customized to meet the needs of proprietary and other nonstandard wireless protocols as well. You can configure your instrument to address a wide variety of tests—from altering nearly every aspect of a digital signal or signal operating environment, to creating experimental signals. This flexibility, along with an architecture that accepts future enhancements makes the E4438C ESG vector signal generator an excellent choice for wireless communications system testing now and in the future.

E4438C ESG vector signal generator

Choose your required frequency range as an *Option* when configuring your E4438C ESG vector signal generator. Please refer to the *E4438C Configuration Guide* for complete ordering information. Literature number 5988-4085EN.

Definitions

Specifications (spec): Specifications describe the instrument's warranted performance and apply after a 45 minute warm-up. All specifications are valid over the signal generators entire operating/environmental range unless otherwise noted. Supplemental characteristics, denoted typical or nominal, provide additional [nonwarranted] information useful in applying the instrument. Column headings labeled "standard" imply that this level of performance is standard, without regard for option configuration. If a particular option configuration modifies the standard performance, that performance is given in a separate column.

Typical (typ): performance is not warranted. It applies at 25°C. 80% of all products meet typical performance.

Nominal (nom): values are not warranted. They represent the value of a parameter that is most likely to occur; the expected or mean value. They are included to facilitate the application of the product.

Standard (std): No options are included when referring to the signal generator unless noted otherwise.

Key Features

Key standard features

- · Expandable architecture
- · Broad frequency coverage
- · Choice of electronic or mechanical attenuator
- · Superior level accuracy
- Wideband FM and ΦM
- · Step and list sweep, both frequency and power
- · Built-in function generator
- · Lightweight, rack-mountable
- 1-year standard warranty
- · 2-year calibration cycle
- Broadband analog I/Q inputs
- I/Q adjustment capabilities and internal calibration routine
- · Excellent modulation accuracy and stability
- · Coherent carrier output up to 4 GHz

Optional features

- Internal baseband generator, 8 or 64 MSa (40 or 320 MB) memory with digital bus capability
- ESG digital input or output connectivity with N5102A Baseband Studio digital signal interface module
- · 6 GB internal hard drive
- · Internal bit error rate (BER) analyzer
- · High-stability time-base
- · Enhanced phase noise performance
- · High output power with mechanical attenuator
- · Move all front panel connectors to the rear panel
- · 3GPP W-CDMA FDD personality
- · cdma2000 and IS-95-A personality
- TDMA personality (GSM, EDGE, GPRS, EGPRS, NADC, PDC, PHS, DECT, TETRA)
- · Calibrated noise (AWGN) personality
- · GPS personality
- · Signal Studio for 1xEV-D0
- Signal Studio for 1xEV-DV and cdma2000
- · Signal Studio for 802.11 WLAN
- Signal Studio for Bluetooth™
- · Signal Studio for enhanced multitone
- Signal Studio for HSDPA over W-CDMA
- · Signal Studio for TD-SCDMA (TSM)
- · Signal Studio for noise power ratio (NPR)

This document contains the measured specifications for the instrument platform and personalities. It does not contain a full list of features for all optional personalities. Please consult the individual product overviews for each personality for a full listing of all features and capabilities. These are listed at the end of this document.

Frequency

Frequency ran	ge
Option ¹	
501	250 kHz to 1 GHz
502	250 kHz to 2 GHz
503	250 kHz to 3 GHz
504	250 kHz to 4 GHz
506	250 kHz to 6 GHz [requires Option UNJ]
Frequency mir	nimum 100 kHz ²

Frequency minimum 100 kHz²
Frequency resolution 0.01 Hz

Frequency switching speed⁵

	S	tandard	With Option UNJ		With	Option 506
	Freq.3	Freq./Amp.4	Freq.3	Freq./Amp.4	Freq.3	Freq./Amp.4
Digital mo	dulation					
on	(< 35 ms) (< 49 ms)	(< 35 ms) (< 52 ms)	(< 41 ms) (< 57 ms)
off	(< 9 ms)	(< 9 ms)	(< 9 ms	(< 9 ms)	(< 16 ms	(< 17 ms)
[For hops	< 5 MHz v	within a band]				
Digital mo	dulation					
on	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 33 ms) (< 53 ms)
off	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 12 ms) (< 14 ms)

Phase offset Phase is adjustable remotely [LAN, GPIB, RS-232] or via front panel in nominal 0.1° increments

Sweep modes

Operating modes	Frequency step, amplitude step and arbitrary list
Dwell time	1 ms to 60 s
Number of points	2 to 401

Internal reference oscillator

bility ⁵		
	Standard	With Option UNJ or 1E5
Aging rate	< ±1 ppm/yr	< ±0.1 ppm/yr or
		$< \pm 0.0005$ ppm/day after 45 days
Temp [0 to 55° C]	(< ±1 ppm)	(< ±0.05 ppm)
Line voltage	(< ±0.1 ppm)	(< ±0.002 ppm)
Line voltage range	(+5% to -10%)	(+5% to -10%)
reference output		
Frequency	10 MHz	
Amplitude	4 dBm ±2 dB	
reference input requir	ements	
	Standard	With Option UNJ or 1E5
Frequency	1, 2, 5, 10 MHz ± 10 ppm	1, 2, 5, 10 MHz ±.2 ppm
Amplitude	-3.5 dBm to 20 dBm	
Input impedance	50 Ω	

^{1.} The E4438C is available as a vector platform only. For analog models refer to the E4420B thru E4426B.

^{2.} Performance below 250 kHz not guaranteed.

^{3.} To within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz.


^{4.} Frequency switching time with the amplitude settled within $\pm 0.1~\text{dB}.$

^{5.} Parentheses denote typical performance.

Output power

Power			
	Standard	With Option UNB	With Option 506
250 kHz to 250 MHz	+11 to -136 dBm	+15 to -136 dBm	+12 to -136 dBm
> 250 MHz to 1 GHz	+13 to -136 dBm	+17 to -136 dBm	+14 to -136 dBm
> 1 to 3 GHz	+10 to -136 dBm	+16 to -136 dBm	+13 to -136 dBm
> 3 to 4 GHz	+7 to -136 dBm	+13 to -136 dBm	+10 to -136 dBm
> 4 to 6 GHz	N/A	N/A	+10 to -136 dBm

Typical maximum available power

Frequency [MHz]

	lution	

0.02 dB

Level range with Attenuator Hold active

	Standard	With Option UNB	With Option 506
250 kHz to 1 GHz	23 dB	27 dB	24 dB
> 1 to 3 GHz	20 dB	26 dB	23 dB
> 3 to 4 GHz	17 dB	23 dB	20 dB
> 4 to 6 GHz	N/A	N/A	20 dB

Level accuracy [dB]

Standard 1,2

_	Power level			
	+7 to	–50 to	-120 to	< -127 dBm
	–50 dBm	-120 dBm	-127 dBm	
250 kHz to 2.2 GHz	±0.5	±0.5	±0.6	(±1.5)
2.2 to 3 GHz	±0.5	±0.6	±0.7	(±2.5)
3 to 4 GHz	±0.6	±0.7	±0.8	(±2.5)

With Option UNB^{2,3}

_	Power level			
	+10 to	–50 to	-120 to	<-127 dBm
	-50 dBm	-120 dBm	-127 dBm	
250 kHz to 2.2 GHz	±0.5	±0.5	±0.6	(±1.5)
2.2 to 3 GHz	±0.6	±0.7	±0.9	(±2.5)
3 to 4 GHz	±0.8	±0.9	±1.5	(±2.5)

With Option 506^{2, 4}

_	Power level			
	+7 to	–50 to	-110 to	< -127 dBm
	-50 dBm	-110 dBm	-127 dBm	
250 kHz to 2.2 GHz	±0.6	±0.6	±0.7	(±1.5)
2.2 to 3 GHz	±0.6	±0.7	±1.0	(±2.5)
3 to 4 GHz	±0.8	±0.9	±1.5	(±2.5)
4 to 6 GHz	±0.8	±0.9	(±2.5)	

Quoted specifications for 23 °C ± 5 °C. Accuracy degrades by less than 0.03 dB/°C over full temperature range. Accuracy degrades by 0.3 dB above +7 dBm, and by 0.8 dB above +10 dBm.

^{2.} Parentheses denote typical performance.

^{3.} Quoted specifications for 23 °C \pm 5 °C. Accuracy degrades by less than 0.01 dB/°C over full temperature range. Accuracy degrades by 0.2 dB above +10 dBm, and by 0.8 dB above +13 dBm.

Quoted specifications for 23 °C ± 5 °C. Accuracy degrades by less than 0.02 dB/°C over full temperature range. Accuracy degrades by 0.2 dB above +7 dBm.

Level accuracy with digital modulation turned on [relative to CW]

Conditions: [with PRBS modulated data;

if using I/Q inputs, $\sqrt{I^2 + Q^2} = 0.5 \text{ V}_{rms}$, nominal]¹

Level accuracy with ALC on

 $\pi/4$ DQPSK or QPSK formats

Conditions: With raised cosine or root-raised cosine filter and $a \ge 0.35$;

with 10 kHz \leq symbol rate \leq 1 MHz; at RF freq \geq 25 MHz;

power \leq max specified -3 dB

±0.25 dB

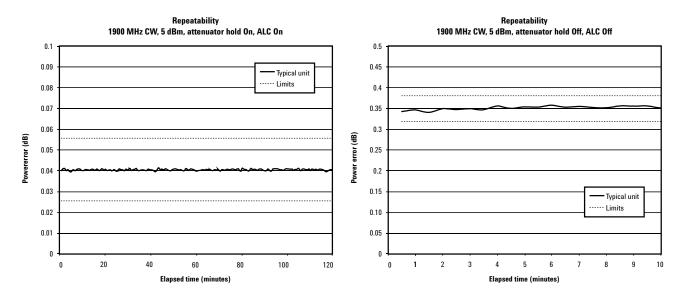
Constant amplitude formats [FSK, GMSK, etc]

Standard With Option 506

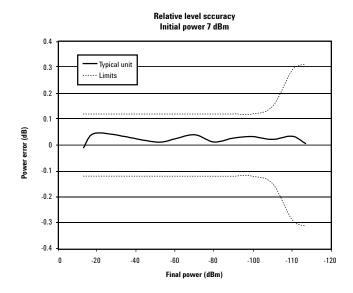
±0.15 dB ±0.20 dB

Level accuracy with ALC off ^{1, 2} (±0.20 dB) [relative to ALC on]

Conditions: After power search is executed, with burst off.

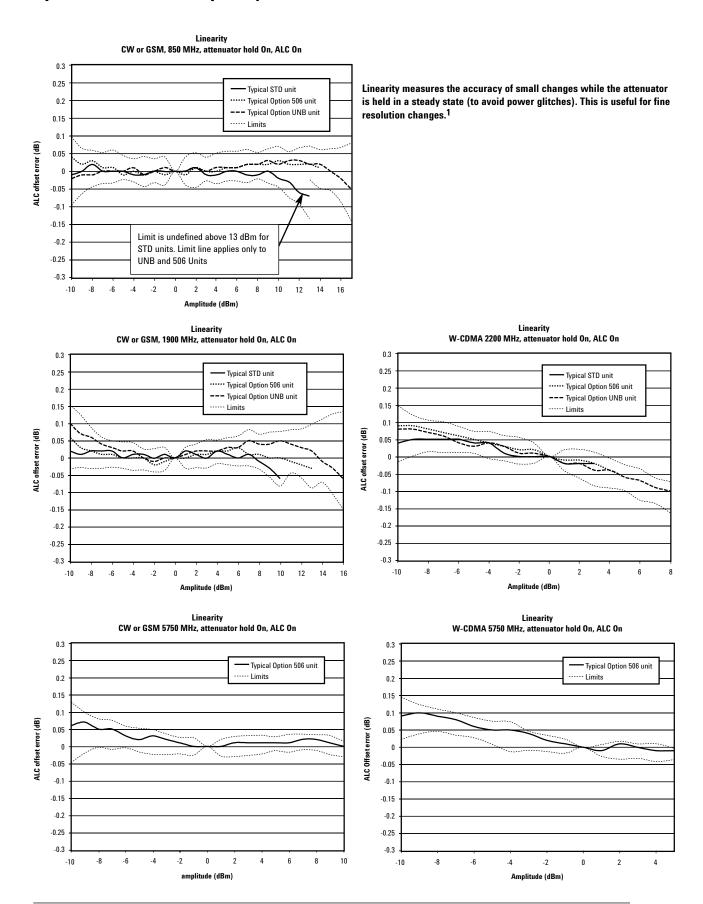

Level switching speed 1

	Standard	With Option UNB	With Option 506
Normal operation [ALC on]	(< 15 ms)	(< 21 ms)	(< 21 ms)
When using power search manual	(< 83 ms)	(< 95 ms)	(< 95 ms)
When using power search auto	(< 103 ms)	(< 119 ms)	(< 119 ms)


^{1.} Parentheses denote typical performance.

 $^{2. \ \} When applying \ external \ I/Q \ signals \ with \ ALC \ off, output \ level \ will \ vary \ directly \ with \ I/Q \ input \ level.$

Repeatability and linearity



Repeatability measures the ability of the instrument to return to a given power setting after a random excursion to any other frequency and power setting. It is a relative measurement that reflects the difference in dB between the maximum and minimum power readings for a given setting over a specific time interval. It should not be confused with absolute power accuracy, which is measured in dBm.¹

Relative level accuracy measures the accuracy of a step change from any power level to any other power level. This is useful for large changes (i.e. 5 dB steps).¹

^{1.} Repeatability and relative level accuracy are typical for all frequency ranges.

^{1.} Repeatability and relative level accuracy are typical for all frequency ranges.

Spectral purity

	Standard	With Option UNJ
at 500 MHz	(< -124 dBc/Hz)	< -136 dBc/Hz, (< -139 dBc/Hz)
at 1 GHz	(< -118 dBc/Hz)	<-130 dBc/Hz, (<-133 dBc/Hz)
at 2 GHz	(< -112 dBc/Hz)	<-124 dBc/Hz, (<-127 dBc/Hz)
at 3 GHz	(<-106 dBc/Hz)	<-120 dBc/Hz, (<-123 dBc/Hz)
at 4 GHz	(<-106 dBc/Hz)	< -118 dBc/Hz, (< -121 dBc/Hz)
at 6 GHz	N/A	<-114 dBc/Hz, (<-117 dBc/Hz)

Residual FM¹ [CW mode, 0.3 to 3 kHz BW, CCITT, rms]

Option UNJ $< N \times 1 Hz (< N \times 0.5 Hz)^2$

Standard

Phase noise mode 1 < N x 2 Hz Phase noise mode 2 < N x 4 Hz

Harmonics $^{1, 6}$ [output level \leq +4 dBm, \leq +7.5 dBm Option UNB, \leq +4.5 dBm Option 506] < -32 dBc above 1 GHz, (< -30 dBc below 1 GHz)

Nonharmonics 1, 3 [\leq +7 dBm output level, \leq +4 dBm Option 506]

	Standard ⁴		With Opt	ion UNJ ⁵
	> 3 kHz	> 10 kHz	> 3 kHz	> 10kHz
	offset	offset	offset	offset
250 kHz to 250 MHz	<-53 dBc (<-68 dBc)	(< -70 dBc)	< -65 dBc	(< -70 dBc)
250 MHz to 500 MHz	<-59 dBc (<-74 dBc)	(< -81 dBc)	<-80 dBc	<-80 dBc
500 MHz to 1 GHz	<-53 dBc (<-68 dBc)	(< -75 dBc)	<-80 dBc	<-80 dBc
1 to 2 GHz	<-47 dBc (<-62 dBc)	(< -69 dBc)	<-74 dBc	<-74 dBc
2 to 4 GHz	<-41 dBc (<-56 dBc)	(< -63 dBc)	<-68 dBc	< -68 dBc
4 to 6 GHz	N/A N/A	N/A	<-62 dBc	< -62 dBc

Sub	har	mor	iics

	Star	ndard	With Option UNJ	<u> </u>
≤ 1 GHz	Noi	ne	None	
>1 GHz	<-	40 dBc	None	
Jitter in µUI ^{1, 7, 8}				
Carrier	SONET/SDH	rms jitter		With option UNJ

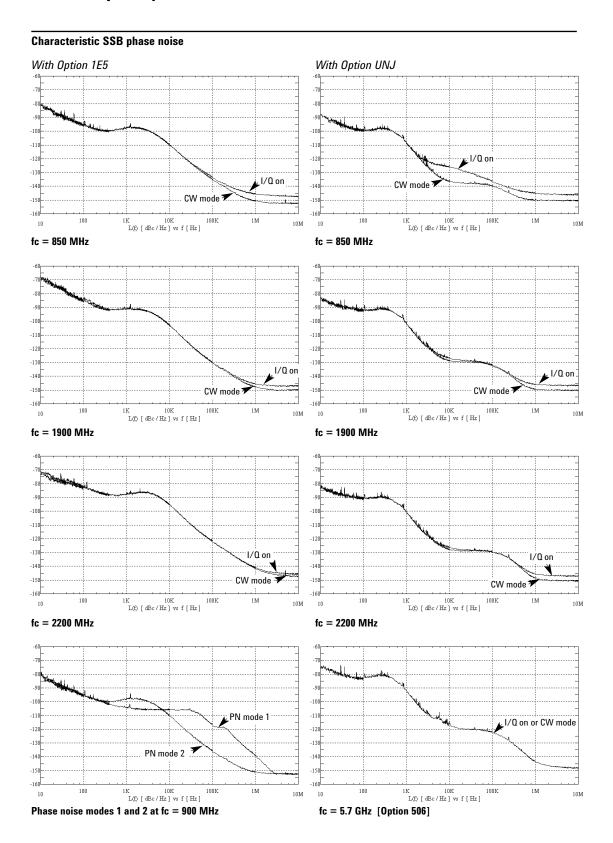
Carrier	SONET/SDH	rms jitter	Standard	With option UNJ
frequency	data rates	bandwidth	(μUI rms)	(μUI rms)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	(325)	(61)
622 MHz	622 MB/s	1 kHz to 5 MHz	(158)	(33)
2.488 GHz	2488 MB/s	5 kHz to 15 MHz	(384)	(64)

tter in seconds ¹	I, 7, 8			
Carrier frequency	SONET/SDH data rates	rms jitter bandwidth	Standard	With option UNJ
155 MHz	155 MB/s	100 Hz to 1.5 MHz	(2.1 ps)	(0.4 ps)
622 MHz	622 MB/s	1 kHz to 5 MHz	(255 fs)	(54 fs)
2.488 GHz	2488 MB/s	5 kHz to 15 MHz	(155 fs)	(26 fs)

^{1.} Parentheses denote typical performance.

^{2.} Refer to frequency bands on page 12 for N values.

^{3.} Spurs outside the operating range of the instrument are not specified.


^{4.} Specifications apply for FM deviations < 100 kHz and are not valid on ΦM. For non-constant amplitude formats, unspecified spur levels occur up to the second harmonic of the baseband rate.

^{5.} Specifications apply for CW mode only.

^{6.} Harmonic performance outside the operating range of the instrument is typical.

^{7.} Calculated from phase noise performance in CW mode only at -2.5 dBm for standard instruments, -0.5 dBm with Option 506, and +2.5 dBm with Option UNB.

^{8.} For other frequencies, data rates, or bandwidths, please contact your sales representative.

Frequency bands

Band	Frequency range	N number
1	250 kHz to \leq 250 MHz	1
2	$>$ 250 MHz to \leq 500 MHz	0.5
3	$>$ 500 MHz to \leq 1GHz	1
4	> 1 to ≤ 2 GHz	2
5	$>$ 2 to \leq 4 GHz	4
6	$>$ 4 to \leq 6 GHz	8

Frequency modulation 1,4

Maximum deviation ²				
	Standard	With Option	UNJ	
	N x 8 MHz	N x 1 MHz		
Resolution	0.1% of devi whichever is	ation or 1 Hz, s greater		
Modulation frequency	rate ⁵ [deviatio	n = 100 kHz]		
Coupling	1 dB bandwi	idth	3 dB bandwidth	
FM path 1[DC]	DC to 100 kH	Нz	(DC to 10 MHz)	
FM path 2 [DC]	DC to 100 kH	Ηz	(DC to 0.9 MHz)	
FM path 1 [AC]	20 Hz to 100	kHz	(5 Hz to 10 MHz)	
FM path 2 [AC]	20 Hz to 100	kHz	(5 Hz to 0.9 MHz)	
Deviation accuracy ² [1 kHz rate, devia	tion < N x 100	kHz]	
	$< \pm 3.5\%$ of	FM deviation -	+ 20 Hz	
Carrier frequency acci	uracy relative t	o CW in DCFN	N ^{2, 3}	

 $\pm 0.1\%$ of set deviation + (N x 1 Hz)

Distortion² [1 kHz rate, dev.= N x 100 kHz]

< 1%

FM using external inputs 1 or 2

Sensitivity 1 V_{peak} for indicated deviation

Input impedance $$ 50 Ω , nominal

FM path 1 and FM path 2 are summed internally for composite modulation. The FM 2 path is limited to a maximum rate of 1 MHz. The FM 2 path must be set to a deviation less than FM 1 path.

^{1.} All analog performance above 4 GHz is typical.

 $^{2. \ \} Refer to frequency bands on this page to compute specifications.$

^{3.} At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of calibration.

^{4.} For non-Option UNJ units, specifications apply in phase noise mode 2 [default].

^{5.} Parentheses denote typical performance.

Phase modulation 1, 5

Resolution	0.1% of set d	eviation	
Modulation freque	ency response ^{2, 7}		
Standard			
	Maximum	Allowable	rates [3 dB BW]
Mode	deviation	Φ M path 1	ΦM path 2
Normal BW	N x 80 rad	DC to 100 kHz	DC to 100 kHz
High BW ⁶	N x 8 rad	(DC to 1 MHz)	(DC to 0.9 MHz)
	N x 1.6 rad	(DC to 10 MHz)	(DC to 0.9 MHz)
With Option UNJ			
	Maximum	Allowable	rates [3 dB BW]
Mode	deviation	Φ M path 1	ΦM path 2
Normal BW	N x 10 radians	DC to 100 kHz	DC to 100 kHz
High BW	N x 1 radians	(DC to 1 MHz)	(DC to 0.9 MHz)

< ±5% of deviation + 0.01 radians

Distortion 2 [1 kHz rate, deviation < 80 radians on standard model, < 10N radians on

Option UNJ models, Normal BW mode]

< 1%

Φ M using external inputs 1 or 2

Sensitivity $1 V_{peak}$ for indicated deviation

Input impedance 50 Ω , nominal

Paths ΦM path 1 and ΦM path 2 are summed internally for composite

modulation. The ΦM 2 path is limited to a maximum rate of 1 MHz. ΦM path 2 must be set to a deviation less than the ΦM

path 1.

Amplitude modulation 1, 3

[fc > 500 kHz]

Kange	0 to 100%		
Resolution	0.1%		
Rates [3 dB bands	width]		
DC coupled	0 to 10 kHz		
AC coupled	10 Hz to 10 kHz		
Accuracy ^{4, 7}	1 kHz rate <±(6	% of setting +1%)	
Distortion 4, 7 [1 kl	Hz rate, THD]		
	Standard/Option UNJ	Option 506	
30% AM	< 1.5%	< 1.5%	
90% AM	(< 4%)	(< 5%)	

AM using external inputs 1 or 2

 $\label{eq:Vpeak} Sensitivity \qquad \qquad 1 \; V_{peak} \; to \; achieve \; indicated \; depth$

Input impedance 50 Ω , nominal

Paths AM path 1 and AM path 2 are summed internally for

composite modulation.

All analog performance above 4 GHz is typical.

^{2.} Refer to frequency bands on page 12 for N. $\,$

^{3.} AM is typical above 3 GHz or if wideband AM or I/Q modulation is simultaneously enabled.

^{4.} Peak envelope power of AM must be 3 dB less than maximum output power below 250 MHz.

^{5.} For non-Option UNJ units, specifications apply in phase noise mode 2 [default].

^{6.} Bandwidth is automatically selected based on deviation.

^{7.} Parentheses denote typical performance.

Wideband AM

Rates [1 dB bandwidth]1

ALC on (400 Hz to 40 MHz) ALC off (DC to 40 MHz)

Wideband AM using external I input only

Sensitivity

0.5 V = 100%

Input impedance

50 Ω , nominal

Pulse modulation

On/off ratio¹

< 2.8 GHz > 80 dB $\geq 2.8 \text{ GHz}$ (> 64 dB)

Rise/fall times¹ (150 ns)

Minimum width¹

ALC on $(2 \mu s)$ ALC off $(0.4 \mu s)$

Pulse repetition frequency¹

ALC on (10 Hz to 250 kHz) ALC off (DC to 1.0 MHz)

Level accuracy 1,2 [relative to CW at ≤ 4 dBm standard, ≤ 7.5 dBm Option UNB,

 \leq 4.5 dBm Option 506] (< \pm 1 dB)

Pulse modulation using external inputs

Input voltage

 $\begin{array}{ll} \text{RF on} & > +0.5 \text{ V, nominal} \\ \text{RF off} & < +0.5 \text{ V, nominal} \\ \text{Input impedance} & 50 \ \Omega, \text{ nominal} \end{array}$

Internal pulse generator

Square wave rate 0.1 Hz to 20 kHz

Pulse

Period 8 µs to 30 seconds Width 4 µs to 30 seconds

Resolution 2 µs

Parentheses denote typical performance

^{2.} With ALC off, specifications apply after the execution of power search. With ALC on, specifications apply for pulse repetition rates ≤10 kHz and pulse widths ≥5 µs.

Internal analog modulation source

[Provides FM, AM, pulse, and phase modulation signals and LF audio out]

Waveforms	sine, square, ramp, triangle, pulse, noise
Rate range	
Sine	0.1 Hz to 100 kHz
Square, ramp, triangle	0.1 Hz to 20 kHz
Resolution	0.1 Hz
Frequency accuracy	same as RF reference source
Swept sine mode [frequency, pl	hase continuous]
Operating modes	Triggered or continuous sweeps
Frequency range	0.1 Hz to 100 kHz
Sweep time	1 ms to 65 sec
Resolution	1 ms
Dual sinewave mode	
Frequency range	0.1 Hz to 100 kHz
Amplitude ratio	0 to 100%
Amplitude ratio resolution	0.1%
LF audio out mode	
Amplitude	0 to 2.5 V_{peak} into 50 Ω
Output impedance	50 Ω nominal

External modulation inputs

Modulation types

Ext 1 FM, Φ M, AM, pulse, and burst envelope

Ext 2 FM, Φ M, AM, and pulse

High/Low Indicator [100 Hz to 10 MHz BW, AC coupled inputs only]. Activated when input level error exceeds 3% [nominal].

External burst envelope

Input voltage

RF On 0 V RF Off -1.0 V Linear control range 0 to -1 V

On/off ratio¹

Condition: V_{in} below -1.05 V

< 2.3 GHz > 75 dB $\geq 2.3 \text{ GHz}$ (> 64 dB)

Rise/fall time1

Condition: With rectangular input

 $(< 2 \mu s)$

Minimum burst repetition frequency¹

ALC on (10 Hz) ALC off DC

Input port External 1

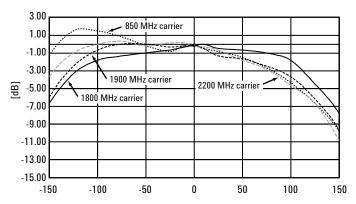
Input impedance 50 Ω , nominal

Composite modulation

AM, FM, and Φ M each consist of two modulation paths which are summed internally for composite modulation. The modulation sources may be any two of the following: Internal, External 1, External 2.

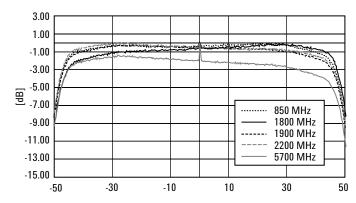
Simultaneous modulation

Multiple modulation types may be simultaneously enabled. For example, W-CDMA, AM, and FM can run concurrently and all will affect the output RF. This is useful for simulating signal impairments. There are some exceptions: FM and ΦM cannot be combined; AM and Burst envelope cannot be combined; Wideband AM and internal I/Q cannot be combined. Two modulation types cannot be generated simultaneously by the same modulation source.


^{1.} Parentheses denote typical performance.

I/Q modulation bandwidth

I/Q inputs


 $\begin{array}{ll} \text{Input impedance} & 50 \ \Omega \ \text{or} \ 600 \ \Omega \\ \text{Full scale input}^1 & \sqrt{I^2 + Q^2} = 0.5 \ \text{V}_{\text{rms}} \end{array}$

I/Q bandwidth using external I/Q source (ALC off)²

Frequency offset from carrier [MHz]

I/Q bandwidth using internal I/Q source (Options 001, 002, 601, 602)

Frequency offset from carrier [MHz]

^{1.} The optimum I/Q input level is $\sqrt{1^2+Q^2} = 0.5 \text{ V}_{rms}$. I/Q drive level affects EVM, origin offset, spectral regrowth, and noise floor. Typically, level accuracy with ALC on will be maintained with drive levels between 0.25 and 1.0 V_{rms} .

^{2.} Parentheses denote typical performance.

I/Q adjustments

Source	Parameter	Range
I/Q baseband inputs	Impedance	50 or 600 Ω
	I offset [600 Ω only]	
	Ω offset [600 Ω only]	± 5 V
I/Q baseband outputs	I/Q offset adjustment	± 3 V
	I/Q offset resolution	1 mV
	I/Q gain balance	± 4 dB
	I/Q attenuation	0 to 40 dB
	I/Q low pass filter	40 MHz, thru
RF output	I/Q offset adjustment	+/- 50%
	I/Q gain balance	± 4 dB
	I/Q attenuation	0 to 40 dB
	I/Q quad skew	
	[≤ 3.3 GHz]	± 10°
	[> 3.3 GHz]	± 5°
	I/Q low pass filter	2.1 MHz, 40 MHz, thru
baseband outputs ¹		
Differential outputs	Ι, <u>Ι</u> , Ω, <u>Ω</u>	
Single ended	I, Q	
Frequency range	DC to 40	MHz [with sinewave]
Output voltage into 50 Ω	· ·	P) [with sinewave]
Output impedance	50 Ω nom	ninal

Baseband generator

[arbitrary waveform mode] [Option 601 or 602]

Channels	2 [I and Q]				
Resolution	16 bits [1/65,536]				
Arbitrary waveform memory					
Maximum playback capacity	8 megasamples (MSa)/channel [Option 601]				
	64 MSa/channel [Option 602]				
Maximum storage capacity	1 GSa [Option 005]				
	3 MSa [Standard]				
Waveform segments					
Segment length	60 samples to 8 or 64 MSa				
Maximum number of segments	1,024 [8 MSa volatile memory]				
	8,192 [64 MSa volatile memory]				
Minimum memory allocation	256 samples or 1 KB blocks				

Maximum total number of segment files

stored in the non-volatile

file system 16,384

Sequencing Continuously repeating

Maximum number of sequences 16,384 [shared with number of segments]
Maximum segments/sequence 32,768 [including nested segments]

Maximum segment repetitions 65,536

^{1.} Parentheses denote typical performance.

Clock	
Sample rate	1 Hz to 100 MHz
Resolution	0.001 Hz
Accuracy	Same as timebase +2 ⁻⁴² [in non-integer applications
Baseband filters	
40 MHz	used for spur reduction
2.1 MHz	used for ACPR reduction
Through	used for maximum bandwidth
Reconstruction filter: [fixed]	
50 MHz	[used for all symbol rates]
Baseband spectral purity ¹	
[full scale sinewave]	
Harmonic distortion	
100 kHz to 2 MHz	(< -65 dBc)
Phase noise	(< -127 dBc/Hz)
[baseband output of 10 MHz s	inewave at 20 kHz offset]
IM performance	(< -74 dB)
two sinewaves at 950 kHz and	d 1050 kHz at baseband]
Types	Continuous, single, gated, segment advance
Source	Trigger key, external, remote [LAN, GPIB, RS-232]
External polarity	Negative, positive
External delay time	10 ns to 40 sec plus latency
External delay time External delay resolution	10 ns to 40 sec plus latency 10 ns
	·
External delay resolution Markers [Markers are defined in a segment of	10 ns during the waveform generation process, or from the
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also	10 ns
External delay resolution Markers [Markers are defined in a segment of	10 ns during the waveform generation process, or from the
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also	10 ns during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.]
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type]
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier]	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] —40 MHz to +40 MHz
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier]	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] —40 MHz to +40 MHz
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] —40 MHz to +40 MHz 0 dB to –40 dB
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] —40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK,
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation PSK	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation PSK QAM	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 256
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation PSK QAM FSK MSK	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 256
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation PSK QAM FSK	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 256 Selectable: 2, 4, 8, 16
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation PSK QAM FSK MSK Data	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 256 Selectable: 2, 4, 8, 16
External delay resolution Markers [Markers are defined in a segment of ESG front panel. A marker can also Marker polarity Number of markers Multicarrier Number of carriers Frequency offset [per carrier] Power offset [per carrier] Modulation PSK QAM FSK MSK Data Multitone	during the waveform generation process, or from the be tied to the RF blanking feature of the ESG.] Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] —40 MHz to +40 MHz 0 dB to —40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 256 Selectable: 2, 4, 8, 16

^{1.} Parentheses denote typical performance.

Baseband generator

[real-time mode] [Option 601 or 602] Basic modulation types [custom format]

PSK BPSK, QPSK, OQPSK, $\pi/4$ DQPSK, 8PSK, 16PSK, D8PSK

MSK User-defined phase offset from 0 to 100°

QAM 4, 16, 32, 64, 256

FSK Selectable: 2, 4, 8, 16 level symmetric, C4FM

User defined: Custom map of up to 16 deviation levels

Symbol rateMaximum deviation< 5 MHz</td>4 times symbol rate

> 5 MHz, < 50 MHz 20 MHz

Resolution: 0.1 Hz

I/Q Custom map of 256 unique values

FIR filter

Selectable Nyquist, root Nyquist, Gaussian, rectangular, Apco 25

a: 0 to 1, B_bT: 0.1 to 1

Custom FIR 16-bit resolution, up to 64 symbols long, automatically resampled to

1024 coefficients [max]

> 32 to 64 symbol filter: symbol rate \leq 12.5 MHz > 16 to 32 symbol filter: symbol rate \leq 25 MHz Internal filters switch to 16 tap when symbol rate is

between 25 and 50 MHz

Symbol rate

For external serial data, symbol rate is adjustable

from 1000 symbols/sec to a maximum symbol rate of

50 Mbits/sec #bits/symbol

For internally generated data, symbol rate is adjustable from 1000 symbols/sec to 50 Msymbols/sec. and a maximum of 8 bits per symbol. Modulation quality may be degraded at high symbol rates.

Baseband reference frequency

Data clock can be phase locked to an external reference.

13 MHz for GSM, 250 kHz to 100 MHz in W-CDMA and cdma20001, 2

Input ECL, CMOS, TTL compatible, 50 Ω AC coupled

Frame trigger delay control

Range 0 to 1,048,575 bits

Resolution 1 bit

^{1.} Performance below 1 MHz not specified.

^{2.} When used, this baseband reference is independent of the 10 MHz RF reference.

Data	types
	Interr

Internally generated data

Pseudo-random patterns PN9, PN11, PN15, PN20, PN23

Repeating sequence Any 4-bit sequence

Other fixed patterns

Direct-pattern RAM [PRAM]

Max size Option 601

8 Mbits 64 Mbits

Option 602 64 Mbits

[each bit uses an entire sample space]

Use Non-standard framing

User file

Max size Option 601

800 KB

Option 602 6.4 MB

Use Continuous modulation or internally generated TDMA standard

Externally generated data

Type Serial data

Inputs Data, bit clock, symbol sync

Accepts data rates ±5% of specified data rate

Internal burst shape control

Varies with standards and bit rates

Rise/fall time range Up to 30 bits Rise/fall delay range 0 to 63.5 bits

Specifications for Signal Personality Characteristics

3GPP W-CDMA

[arbitrary waveform mode ²] [Option 400]

Error vector magnitude¹

[1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 2.1 MHz baseband filter,

3.84 Mcps chip rate, \leq 4 dBm, \leq 7 dBm with Option UNB]

1 DPCH \leq 2.3%, (< 1.3%)

Level accuracy [relative to CW at 800, 900, 1800, 1900, 2200 MHz]1

[\leq 2.5 dBm standard, 7.5 dBm for Option UNB, and 4.5 dBm for Option 506] \pm 0.7 dB (\pm 0.35 dB)

±0.7 dB (±0

Adjacent channel leakage ratio1

[1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate,

 \leq 0 dBm Option UNB, \leq –3dBm Option 506, \leq –5 dBm standard in

Optimize ADJ mode]

1 DPCH _-65 dBc (-67 dBc)

Test Model 1 —63 dBc (-65 dBc)

+ 64 DPCH

Alternate channel leakage ratio¹

[1.8 GHz < f_c < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate,

 \leq 2.5 dBm standard, \leq 4.5 dBm Option 506, \leq 7.5 dBm Option UNB,

in Optimize ALT mode]

+ 64 DPCH

Parentheses denote typical performance.

^{2.} Valid for 23° ±5° C.

IS-95 CDMA

[arbitrary waveform mode²] [Option 401]

Spurious emissions

[dBc, IS-95 modified filter with equalizer and amplitude = \leq -5 dBm standard, \leq -3 dBm for Option 506, \leq 0 dBm for Option UNB]¹

Frequencies/offsets	0.885 to 1.25 MHz Standard Option 50		0 .0	<i>1.98 MHz</i> Option 506	1.98 to 5 MHz Standard Option 506		
Reverse 30 – 200 MHz 700 – 1000 MHz >1000 – 2000 MHz	(-74) -73 (-77) -76 (-79)	(–74) –73 (–77) –75 (–79)	(–77) (–81) (–83)	(–77) (–81) (–83)	(–80) (–85) (–85)	(-80) (-85) (-85)	
9/64 channels 30 – 200 MHz 700 – 1000 MHz >1000 – 2000 MHz	(–70) –73 (–76) –72 (–76)	(–70) –73 (–76) –71 (–76)	(–73) (–79) (–79)	(–73) (–79) (–79)	(-79) (-82) (-82)	(-79) (-82) (-82)	

Rho¹[\leq 4 dBm standard and Option 506, or \leq 7 dBm Option UNB, IS-95 filter, \leq 2 GHz] $\rho \geq$ 0.9992 (.9998)

cdma2000

[arbitrary waveform mode] [Option 401]

Spurious emissions

[dBc, IS-95 modified filter with equalizer and amplitude = \le -5 dBm standard, \le -3 dBm for Option 506, \le 0 dBm for Option UNB]

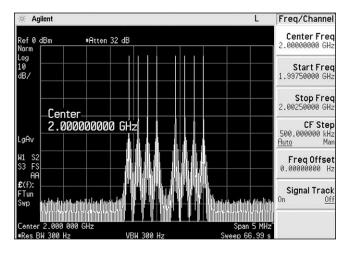
	Off	sets from center of carr	ier					
Frequencies/offsets 2.1	35 to 2.50 MHz	2.50 to 3.23 MHz	3.23 to 10 MHz					
Forward 9 channel, SR3/	multi-carrier ^{1, 3}							
30 – 200 MHz	(-70)	(-69)	(-72)					
700 – 1000 MHz	(–75)	(-74)	(-77)					
>1000 - 2000 MHz	(-75)	(-74)	(-77)					
Offsets f	rom center of cari	rier						
Frequencies/offsets 2.6	55 to 3.75 MHz	3.75 to 5.94 MHz	5.94 to 10 MHz					
Forward 9 channel, SR3/	DS ^{1, 4}							
30 – 200 MHz	(-76)	(-78)	(-78)					
700 – 1000 MHz	(-80)	(-83)	(-85)					
>1000 – 2000 MHz	(-80)	(-83)	(-85)					
Reverse 5 channel, SR3/DS ^{1, 3}								
30 – 200 MHz	(-78)	(-78)	(-78)					
700 – 1000 MHz	(-82)	(-83)	(-85)					
>1000 – 2000 MHz	(–82)	(–83)	(-85)					

Error vector magnitude

[\leq 4 dBm standard and Option 506, \leq 7 dBm for Option UNB] [825 to 2100 MHz, SR3 pilot, IS-95 filter, which is optimized for EVM]¹ EVM \leq 2.1%, (\leq 1.5%)

^{1.} Parentheses denote typical performance.

^{2.} Valid for 23° ±5° C.


^{3.} Measurements performed with 30 kHz BW, relative to power in one carrier.

^{4.} Measurements performed with 30 kHz BW, relative to total power.

Enhanced multitone¹

[arbitrary waveform mode]
[Option 408]

Number of tones	2 to 1024
Tone spacing	1 kHz to 50 MHz, limited by 80 MHz I/Q bandwidth
Tone power (relative)	0 to -50 dB
Phase distribution	Fixed, random or parabolic
Suppression level	-50 to -90 dBc, depending on number of tones and available calibration time. Expected suppression = 80 dBc -10 log [N/8], where N is the number of tones
Calibration interval	8 hours
Calibration time	10 minutes (8 tones, -80 dBc suppression)
Temperature stability	1 dB/°C (typical for IMD products) 5 dB/°C (worst case for LO feedthrough and unbalanced images)

Enhanced multitone signal with correction applied

AWGN

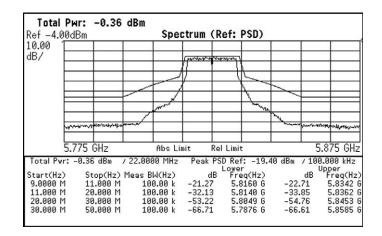
[real-time mode]
[Option 403]

Crest factor [output power set at least 16 dB below maximum power] > 16 dB						
Randomness	89 bit pseudo-random generation, repetition period 3×10^9 years					
Carrier to noise ratio	Magnitude error \leq 0.2 dB at baseband I/Q outputs.					

^{1.} All values typical.

802.11 WLAN

[arbitrary waveform mode] [Option 417]¹


EVM	(< 1%, -40 dB)

The EVM was measured with an 89641A vector signal analyzer with Option B7R. Instrument and software settings listed below.

Software settings		Source settings	
Data rate	54 Mbps	Frequency	5.8/2.4/0.9 GHz
Modulation	64 QAM	Output power	≤ -1 dBm
Encoder	3/4 rate	Reconstruction filter	thru
Scrambler	active	ALC	0n
interleaver	active	RF blanking	Off
Scrambler initialization	5D	Modulator Atten	8 to 10 dB
Support carrier setup	All channels	active	
Idle interval	100 μS	89641A settings	
OSR	≥ 2	Frequency	5.8/2.4/0.9 GHz
Window length	≥8	Span	20 MHz
Data type	PN15	Range	optimal
Data length	1024	RMS video average	20

802.11a spectral mask typical performance

(0 dbm, at 5.805 GHz, OSR: 4, window length: 16)

^{1.} All values typical.

Custom modulation

[real-time mode]

Custom digitally modulated signals [real-time mode] 1,7

Modulation	QPSK	π/4DQPSK	16QAM	2FSK	GMSK
Filter		Root Nyquist	t	Ga	nussian
Filter factor [a or B_bT]	0.25	0.25	0.25	0.5	0.5
Modulation index	N/A	N/A	N/A	0.5	N/A
Symbol rate [Msym/s]	4	4	4	1	1
	Error	vector magnit	ude ^{2, 6}	Shift error ^{2, 6}	Global phase error ^{2, 6}
		[% rms]		[% rms]	[degrees rms]
fc = 1 GHz	1.1 (0.7)	1.1 (0.7)	1.0 (0.6)	1.3 (0.8)	0.4 (0.2)
fc = 2 GHz	1.2 (0.8)	1.2 (0.8)	1.0 (0.6)	1.4 (0.9)	0.5 (0.3)
fc = 3 GHz	1.6 (1.0)	1.6 (1.0)	1.4 (0.8)	1.5 (1.0)	0.6 (0.3)
fc = 4 GHz	2.5 (1.3)	2.5 (1.2)	2.8 (1.4)	3.0 (1.8)	0.8 (0.5)
fc = 5 GHz	1.5 (1.0)	1.5 (1.0)	1.2 (0.8)	1.8 (1.2)	0.6 (0.3)
fc = 6 GHz	1.8 (1.2)	1.8 (1.2)	1.4 (1.0)	2.0 (1.4)	0.8 (0.4)

Internal modulation using real-time TDMA personalities [Option 402]⁷

	NA	DC	PI	DC	PHS TETRA ⁴		DECT	GSM D	CS, PCS	EDGE		
Error vector magnitude ^{3, 6} [% rms]												
Low EVM mode	0.9	(0.6)	0.9 (0.7)		0.8 (0.5)		0.8 (0.5)					1.2 (0.6)
Low ACP mode	(1	.1)	(0	.9)	(0.6)		(1.0)					
Global phase error ³												
rms	N.	/A	N/	/A	N.	/A	N/A		N/A	0.6	(0.3)	N/A
pk										1.9	(1.0)	
Deviation accuracy ³ [kHz, rms]	N.	/A	N,	/A	N/A		N,	/A	2.5 (1.1)	N,	/A	N/A
Channel spacing [kHz]	3	0	25		300		2	5	1728	200		200
Adjacent channel power ³ [ACP]	Cont.	Burst	Cont.	Burst	Cont.	Burst	Cont.	Burst	N/A	Cont.	Burst	N/A
(Low ACP mode, dBc)												
at adjacent channel ⁵	(-35)	(-34)	-	-	_	_	(-70)	(-64)		(-37)	(-37)	
at 1st alternate channel ⁵	(-80)	(-79)	(-74)	(-74)	(-83)	(-79)	(-81)	(-80)		(-71)	(-71)	
at 2nd alternate channel ⁵	(-84)	(-84)	-	-	(-85)	(-82)	(-82)	(-82)		(-87)	(-84)	
at 3rd alternate channel ⁵	(-86)	(-85)	(-82)	(-82)	_	_	(-84)	(-84)		(-88)	(-85)	
Support burst types	Cus	tom	Cus	Custom Custom		Cus	tom	Custom	Custom	, normal		
	up/dov	vn TCH	up/dov	wn TCH	TCH, sync		up control 1 & 2,		dummy B 1 & 2,	Fcorr, sync,		
			up '	Vox			up no	rmal,	traffic B,	dummy,	access	
							down r	normal,	low capacity			
Scramble capability					Yes		Ye	es				

^{1.} This level of performance can be attained using the external 1/Q inputs, provided the quality of the baseband signal meets or exceeds that of the ESG baseband generator.

^{2.} Specifications apply at power levels \leq +4 dBm [\leq +5 dBm for Option 506, and \leq +8 dBm for Option UNB] with default scale factor of I/Q outputs.

Specifications apply for the symbol rates, filter, filter factors [a or BbT] and default scaling factor specified for each standard, and at power levels ≤ +7 dBm [≤ +10 dBm for Option UNB].

^{4.} ACP for TETRA is measured over a 25 kHz bandwidth, with an 18 kHz root raised cosine filter. Low ACP mode is valid at power levels ≤ −1 dBm [≤ 1 dBm for Option 506 and ≤ +4 dBm for Option UNB].

^{5.} The "channel spacing" determines the offset size of the adjacent and alternate channels: Adjacent channel offset = 1 x channel spacing, 1st alternate channel = 2 x channel spacing, 2nd alternate channel = 3 x channel spacing, etc.

^{6.} Valid after executing I/Q calibration and maintained within +/- 5 °C of the calibration temperature.

^{7.} Parentheses denote typical performance.

GSM/GPRS

[real-time mode] [Option 402]

lultiframe output data genera	
Coding scheme	Full-rate speech [TCH/FS] CS-1, CS-4
Data	PN9 or PN15 The selected data sequence is coded continuously across the RLC data block as per ETSI TS 100 909, 3GPF TS 05.03, V8.9.0, 2000-11 [release 1999] An independent version of the selected data sequence is coded across the MAC header.
Frame structure	26-frame multi-frame structure as per ETSI GSM, 05.01 version 6.1.1 [1998-07]. [Coding is done on frames 0-11, 13-24, of the multi-frame Frame 25 is idle [RF blanked].]
Adjacent timeslots	
Data	PN9, PN15 coded as per ETSI TS 100 909, 3GPP TS 05.03, V8.9.0, 2000-11 [release 1999].
Frame structure	26-frame multi-frame structure as per ETSI GSM, 5.01 version 6.1.1 [1998-07].
lultiframe measurements ¹	
GSM measurement modes Static sensitivity	RBER at user-specified power level measured. [This is the complete conformance test as defined in pri-ETS 300 609-1 [GSM 11.21] version 4.12.0 [Dec 98], section 7.3.4.]
Sensitivity search	Automatically finds the input level [sensitivity] that cause a user-specified RBER [normally 2%] for class II bits.
Maximum frame coun	t 6,000,000 speech frames
GSM measurement results	Class Ib bit-error ratio [RBER for TCH/FS] Class II bit-error ratio [RBER for TCH/FS] Frame erasure ratio [FER] Downlink error frame count Class Ib bit-error count Class II bit-error count Erased frame count Total frame count
Maximum RBER	50%
Maximum FFR	100%

Alternate time slot power level control

[Valid for standard attenuator only. Not applicable to Option UNB or Option 506] Amplitude is settled within 0.5 dB in 20 μ secs, +4 to -136 dBm at 23 \pm 5 °C

EDGE/EGPRS

[real-time mode]
[Option 402]

Coding scheme	MCS-1: uplink and downlink, MCS-5: uplink and downlink MCS-9: uplink and downlink, E-TCH/F43.2
Data	PN9 or PN15 The selected data sequence is fully coded continuously across the RLC data blocks according to MCS-1, MCS-5, MCS-9 or E-TCH/F43.2. An independent version of the selected data sequence is coded across the unused RLC/MAC header fields [The CPS header field is as defined in GSM 04.60 V8.50].
Frame structure	52-frame multi-frame structure for EDGE/EGPRS channels as per ETSI TS 100 909, 3GPP TS 05.03, V8.9.0, 2000-11 [release 1999]. [Coding is done on frames 0-11, 13-24, 26-37, 39-50 on a 52 PDCH multi-frame. Frame 25 and 51 are idle [RF blanked].]
Adjacent timeslots	
Data Frame structure	Coded MCS-1, MCS-5 or MCS-9 with continuous PN9 or PN15 sequence data payload. Uncoded PN9, PN15. Note: Maximum of 4 timeslots can be turned on with EDGE/EGPRS multi-frame coded data. EDGE/EGPRS PDCH multi-frame. Repeating EDGE frame.
ultiframe measurements ¹	
EDGE measurement modes Static sensitivity	BER/BLER at user-specified power level measured; based on bit errors in total unencoded data, and block errors in coded channels.
Sensitivity search BER/BLER	Automatically finds the input level [sensitivity] that cause user-specified BER [uncoded] or BER [coded].
EDGE measurement results	Erased data block count/rate for coded channel [MCS-1, MCS-5 or MCS-9]. Total data block count for coded channel [MCS-1, MCS-5 or MCS-9]. Payload bit error count/rate for raw BER. Total burst count for raw BER. Data block count which contains residual bit errors and bit error count. Downlink error reporting

GSM/EDGE base station bit error rate test [BERT]

[Option 300]

This is a system of two instruments; an ESG with Option 300, and a VSA with Option 300. Both are required. Option 300 for the ESG requires Option 601 or 602, the TDMA personalities [Option 402], and the UN7 BER board. The VSA functions as an IF downconverter. It may be used simultaneously to make transmitter measurements on the loop back signal.

GSM BTS test only

E4406A VSA series transmitter tester with Options BAH [GSM measurement personality] and Option 300 [321.4 MHz output].

GSM/FDGF BTS test

E4406A VSA series transmitter tester with Option 202 [GSM and EDGE measurement personality] and Option 300 [321.4 MHz output].

Test technique	RF loopback
GSM 400 GSM 850 GSM 900 [P-GSM] DCS 1800 PCS 1900 E-GSM [extended]	
Minimum power level	–136 dBm [ESG minimum]
Maximum power level	+13 dBm [option dependent]
Power level accuracy	± 0.5 dB [23° \pm 5 °C] [power and frequency dependent]
Relative power level	0 to ±130 dB relative to timeslot under test. [Limited only by output power range of the ESG.]
Timeslot under test Timeslots tested	0 to 7 A single timeslot is tested at one time. [No frequency hopping.]
Encryption	None
Measurement triggers	Immediate, trigger key, external, remote [LAN, GPIB, RS-232]
Measurement indication	Pass/fail
BCH sync	BCH signal from the BTS is used to determine TCH frame and multi-frame location.
TCH sync	The idle frame [no RF] in the TCH signal itself is used to determine the TCH multi-frame location and so generate the multi-frame sync signal.
Threshold	Termination of measurement when error count exceeds user-specified threshold.

Bit error rate [BER] analyzer [Option UN7]

Clock rate	100 Hz to 60 MHz	
Supported data patterns	PN9, 11, 15, 20, 23	
Resolution	10 digits	
Bit sequence length	100 bits to 4.294 Gbits after synchronization	
Features	Input clock phase adjustment and gate delay Adjustable input threshold Hi/lo threshold selectable from 0.7 V [TTL], 1.4 V [TTL]	

Operating characteristics

Power requirements		or 60 Hz; 300 W max rected. Not for 400 I	
Operating temperature range	² 0 to 55 °C		
Storage temperature range	–40 to 71 °C		
Shock and vibration	Meets MIL-STD-	28800E Type III, Clas	ss 3.
Leakage	MIL-STD-461C C typically < 1 μ V \leq 1000 MHz, me one inch from ar	adiated interference E02 Part 2 and CISP nominally 0.1 µV wi asured with a reson y surface with outp its properly terminal	R 11. Leakage is th a 2-turn loop] at ant dipole antenna, ut level < 0 dBm
Storage registers	Memory is shared by instrument states, user data files, sweep list files and waveform sequences. Depending on the number and size of these files, up to 100 storage registers and 1000 register sequences [10 per register] are available.		
Weight	< 16 kg [35 lb.] n	et, < 23 kg [50 lb.] s	hipping
Dimensions	133 mm H x 426 mm W x 432 mm D [5.25 in H x 16.8 in W x 17 in D]		
Remote programming			
Interface	GPIB [IEEE-488.2 LAN [10BaseT].	2-1987] with listen a	nd talk, RS-232,
Control languages ¹	SCPI version 199 8657A/B/C/D/	16.0, also compatible J1 mnemonics.	with 8656B and
Functions controlled	All front panel fu	inctions except pow	er switch and knob.
ISO compliant	registered facilit	is manufactured in y in concurrence wit gies commitment to	th
Reverse power protection			
	Standard	With Option	506
250 kHz to 2 GHz	47 dBm	30 dBm	
> 2 to 4 GHz > 4 to 6 GHz	44 dBm	30 dBm	
Max DC voltage	N/A 50 V	30 dBm	
SWR ⁴	Standard	Option UNB	Option 506
250 kHz to 2.2 GHz	(< 1.4:1)	(< 1.4:1)	(< 1.5:1)
> 2.2 GHz to 3 GHz	(< 1.4:1)	(< 1.5:1)	(< 1.7:1)
> 3 GHz to 4 GHz	(< 1.4:1)	(< 1.8:1)	(< 2.1:1)
> 4 GHz to 6 GHz	N/A	N/A	(< 2.0:1)
Output impedance	50 Ω nominal		

^{1.} ESG series does not implement 8657A/B "Standby" or "On" [RO or R1, respectively] mnemonics.

^{2.} Save and recall of user files and instrument states from non-volatile storage is guaranteed only over the range 0 to 40 °C.

^{3.} For 400 MHz systems, order transformer 70001-60066.

Parentheses denote typical performance.

Accessories	Transit case	Part number 9211-1296
Inputs and outputs All front panel connectors can be moved to rear with Option 1EM.	10 MHz input	Accepts a 1, 2, 5, or 10 MHz ±10 ppm [standard timebase] or ±1 ppm [high-stability timebase] reference signal for operation with an external timebase. Nominal input level –3.5 to +20 dBm, impedance 50 ohms. [BNC, rear panel]
	10 MHz output	Outputs the 10 MHz reference signal. Level nominally +3.9 dBm ±2 dB. Nominal output impedance 50 ohms. [BNC, rear panel]
	Alternate power input	Accepts CMOS ¹ signal for synchronization of external data and alternate power signal timing. The damage levels are -0.5 to +5.5 V. [Auxiliary I/O connector, rear panel]
	Baseband generator reference input	Accepts 0 to +20 dBm sinewave, or TTL squarewave, to use as reference clock for the baseband generator. Phase locks the internal data generator to the external reference; the RF frequency is still locked to the 10 MHz reference. Rate is 250 kHz to 100 MHz, 50 ohms nominal, AC coupled. [BNC, rear panel]
	Burst gate input	The burst gate in connector accepts a CMOS¹ signal for gating burst power in digital modulation applications. The burst gating is used when you are externally supplying data and clock information. The input signal must be synchronized with the external data input that will be output during the burst. The burst power envelope and modulated data are internally delayed and re-synchronized. The input signal must be CMOS high for normal burst RF power or CW RF output power and CMOS low for RF off. The damage levels are -0.5 to $+5.5$ V.
		This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, this input is relocated to a rear panel SMB connector. With Option 401, this connector is used for the even second synchronization input.
	Coherent carrier output ²	Outputs RF modulated with FM or Φ M, but not IQ, pulse or AM. Nominal power -2 dBm ± 5 dB. Nominal impedance 50 ohms. Frequency range from > 250 MHz to 4 GHz. For RF carriers below this range, output frequency = 1 GHz $-$ frequency of RF output. Damage levels 20 VDC and 13 dBm reverse RF power. [SMA, rear panel]

^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.
2. Coherent carrier is modulated by FM or Φ M when enabled.

Data clock input The CMOS¹ compatible data clock connector

accepts an externally supplied data-clock input for digital modulation applications. The expected input is a bit clock signal where the falling edge is used to clock

the data and symbol sync signals.

The maximum clock rate is $50\ MHz$. The damage levels

are -0.5 to +5.5 V.

This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, this input is relocated to a rear panel

SMB connector.

Data clock output Relays a CMOS¹ bit clock signal for synchronizing

serial data. [Auxiliary I/O connector, rear panel]

Data input The CMOS¹ compatible data connector accepts an

externally supplied data input for digital modulation applications. CMOS high is equivalent to a data 1 and $\,$

a CMOS low is equivalent to a data 0.

The maximum data rate is 50 Mb/s. The data must be valid on the data clock falling edges [normal mode] or the symbol sync falling edges [symbol mode]. The

damage levels are -0.5 to +5.5 V.

This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, this input is relocated to a rear panel

SMB connector.

Data output Outputs serial data from the internal data generator or

the externally supplied signal at the data input. CMOS¹

signal. [Auxiliary I/O connector, rear panel]

Event 1 output In real-time mode, outputs pattern or frame

synchronization pulse for triggering or gating external equipment. May be set to start at the beginning of a pattern, frame, or timeslot and is adjustable to within

 $\boldsymbol{\pm}$ one timeslot with one bit resolution.

In arbitrary waveform mode, this connector outputs the timing signal generated by marker 1. [BNC, rear panel]

Event 2 output In real-time mode, outputs data enable signal for gating

external equipment. Applicable when external data is clocked into internally generated timeslots. Data is

enabled when signal is low.

In arbitrary waveform mode, this connector outputs the timing signal generated by marker 2. [BNC, rear panel]

Event 3 output In arbitrary waveform mode, this connector outputs the

timing signal generated by marker 3. [Auxiliary I/O

connector, rear panel]

Event 4 output In arbitrary waveform mode, this connector outputs the

timing signal generated by marker 4. [Auxiliary I/O

connector, rear panel]

^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

External 1 input

This BNC input connector accepts a $\pm 1~V_{peak}$ signal for AM, FM, pulse, burst, and phase modulation. For all these modulations, $\pm 1~V_{peak}$ produces the indicated deviation or depth. When ac-coupled inputs are selected for AM, FM, or phase modulation and the peak input voltage differs from 1 V_{peak} by more than 3%, the hi/lo annunciator light on the display. The input impedance is 50 ohms and the damage levels are 5 V_{rms} and 10 V_{peak} .

If you configure your signal generator with Option 1EM, this input is relocated to a female BNC connector on the rear panel.

External 2 input

This BNC input connector accepts a $\pm 1~V_{peak}$ signal for AM, FM, phase modulation, and pulse modulation. With AM, FM, or phase modulation, $\pm 1~V_{peak}$ produces the indicated deviation or depth. With pulse modulation, $\pm 1~V$ is on and 0 V is off. When ac-coupled inputs are selected for AM, FM, or phase modulation, and the peak voltage differs from 1 V_{peak} by more than 3%, the hi/lo annunciator light on the display. The input impedance is 50 ohms and the damage levels are 5 V_{rms} and 10 V_{peak} .

If you configure your signal generator with Option 1EM, this input is relocated to a female BNC connector on the rear panel.

GPIB

Allows communication with compatible devices. [rear panel]

I input

Accepts an I input either for I/Q modulation or for wideband AM. Nominal input impedance 50 or 600 ohms. Damage levels are 1 V_{rms} and 10 V_{neak} . [BNC, front panel]

I out and Q out1

The I out and Q out connectors output the analog components of I/Q modulation from the internal baseband generator. The nominal output impedance of these connectors are 50 Ω , DC-coupled. The damage levels are > +3.5 V and < -3.5 V. The output signal levels into a 50 Ω load are as follows:

- (0.5 V_{peak}), corresponds to one unit length of the I/Q vector.
- (0.7 V_{peak}), for peaks for $\pi/4$ DQPSK.
- (1.6 V_{p-p}) maximum [Options 601, 602, 001, 002 only].

These female BNC connectors are provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, these inputs are relocated to rear panel SMB connectors.

^{1.} Parentheses denote typical performance.

 \overline{I} and \overline{Q} out \overline{I} and \overline{Q} are used in conjunction with I and Q to

provide a balanced baseband stimulus. Balanced signals are signals present in two separate conductors that are symmetrical about the common mode offset, and are opposite in polarity [180 degrees out of phase].

These female BNC connectors are provided only on signal generators with Option 601 or 602. If you configure your signal generator with Option 1EM, these inputs are

relocated to rear panel SMB connectors.

LF output Outputs the internally-generated LF source. Outputs 0 to

2.5 $\rm V_{peak}$ into 50 ohms, or $\rm ~0$ to 5 $\rm V_{peak}$ into high

impedance. [BNC, front panel]

Pattern trigger input Accepts CMOS¹ signal to trigger internal pattern or frame

generator to start single pattern output. Minimum pulse width 100 ns. The damage levels are -0.5 to +5.5 V.

[BNC, rear panel]

Q input Accepts a Q input for I/Q modulation. Nominal input

impedance 50 or 600 ohms, damage levels are 1 $V_{\rm rms}$

and 10 V_{neak}. [BNC, front panel]

RF output Nominal output impedance 50 ohms.

[type-N female, front panel]

Sweep output Generates output voltage, 0 to +10 V when signal

generator is sweeping. Output impedance < 1 ohm, can

drive 2000 ohms. [BNC, rear panel]

Symbol sync input The CMOS¹ compatible symbol sync connector accepts

an externally supplied symbol sync for digital modulation applications. The expected input is a symbol clock signal. It may be used in two modes. When used as a symbol sync in conjunction with a data clock, the signal must be high during the first data bit of the symbol. The signal must be valid during the falling edge of the data clock signal and may be a single pulse or continuous. When the symbol sync itself is used as the [symbol] clock, the

falling edge is used to clock the data signal.

The maximum clock rate is 50 MHz. The damage levels

are -0.5 to +5.5 V. [BNC, front panel]

This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, this input is relocated to a rear panel

SMB connector.

Symbol sync output Outputs CMOS¹ symbol clock for symbol synchronization,

one data clock period wide. [Auxiliary I/O connector,

rear panel

Trigger input Accepts CMOS¹ signal for triggering point-to-point in

manual sweep mode, or to trigger start of LF sweep. the damage levels are -0.5 to +5.5 V. [BNC, rear panel]

Trigger output Outputs a TTL signal: high at start of dwell, or when

waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received, high or low 2 µs pulse at start of LF sweep. [BNC, rear panel]

^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

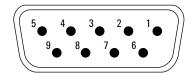
With Option UN7	
BER data, BER clock BER gate	Accepts CMOS 1 or 75 Ω input. Polarity is selected. Clock duty and inputs cycle is 30% to 70%. [SMB, rear panel]
BER sync loss output	Outputs a CMOS ¹ signal that is low when sync is lost. Valid only when measure end signal is high. [Auxiliary I/O connector, rear panel]
BER no data output	Outputs a CMOS 1 signal that is low when no data is detected. Valid only when measure end is high. [Auxiliary I/O connector, rear panel]
BER error-bit-output	Outputs CMOS 1 signal when error bit is detected. Pulse width matches the input clock. [Auxiliary I/O connector, rear panel]
BER test result output	Outputs a CMOS 1 signal that is high for fail and low for pass. Valid only on measure end signal falling edge. [Auxiliary I/O connector, rear panel]
BER measure end output	Outputs a CMOS ¹ signal that is high during measurement. Trigger events are ignored while high. [Auxiliary I/O connector, rear panel]
BER measure trigger	Accepts CMOS¹ signal to initiate BER measurement. Polarity is selectable; available when trigger source is selected as "AUX I/O". Damage levels are The damage levels are -0.5 to +5.5 V. [Auxiliary I/O connector, rear panel]
With Option 300	
321.4 MHz input	Accepts a 321.4 MHz IF signal for GSM/EDGE/loopback testing. Input amplitude range -7 dBm to -22 dBm. Nominal input impedance 50 ohms. [SMB, rear panel]
I AM compostor	

LAN connector

LAN communication is supported by the signal generator via the LAN connector. It is functionally equivalent to the GPIB connector. The LAN connector enables the signal generator to be remotely programmed by a LAN-connected computer. The distance between a computer and the signal generator is limited to 100 meters [10BaseT]. For more information about the LAN, refer to the *Getting Started* chapter in the *Programming Guide*.

	Data	transfer	speeds ²
--	------	----------	---------------------

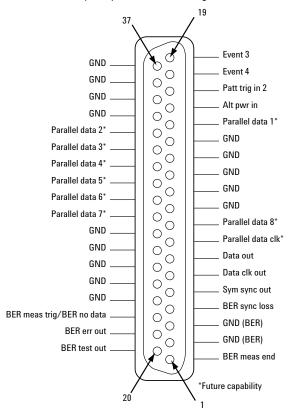
LAN [FTP]	file transfer to volatile memory	(700 KB/sec)
	to hard drive	(500 KB/sec)
LAN [SCPI]	command transfer to volatile memory	(146 KB/sec)
	to hard drive	(128 KB/sec)
Internal file transf	(1280 KB/sec)	


^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

^{2.} Parentheses denote typical performance.

RS-232 connector

This male DB-9 connector is an RS-232 serial port that can be used for controlling the signal generator remotely. It is functionally equivalent to the GPIB connector. The following table shows the description of the pinouts. The pin configuration is shown below.


Pin number	Signal description	Signal name
1	No connection	
2	Receive data	RECV
3	Transmit data	XMIT
4	+5 V	
5	Ground, 0 V	
6	No connection	
7	Request to send	RTS
8	Clear to send	CTS
9	No connection	

View looking into rear panel connector

Auxiliary I/O connector

This connector enables you to access the inputs and outputs of the baseband generator. The figure below shows the Auxiliary I/O pin connector configuration.

View looking into rear panel connector

Mating connector

37 pin male D-subminiature, available from AMP, 3M, others.

Ordering Information¹

Frequency options

501 1 GHz frequency range
502 2 GHz frequency range
503 3 GHz frequency range
504 4 GHz frequency range
506 6 GHz frequency range [requires option UNJ, includes mechanical attenuator]

Performance enhancement options

- UNB High output power with mechanical attenuator [included with 506]
- UNJ Enhanced phase noise performance [includes 1E5]
- 1E5 High-stability time base
- 1EM Moves all front panel connectors to rear
- 003² ESG digital output connectivity with N5102A Baseband Studio digital interface module
- 004² ESG digital input connectivity with N5102A Baseband Studio digital interface module
- 601 Internal baseband generator with 8 MSa and digital bus capability
 [40 MB] of memory
- 602 Internal baseband generator with 64 MSa and digital bus capability [320 MB] of memory
- 0053 6 GB internal hard drive
- UN7 Internal bit-error-rate analyzer
- 300 GSM/EDGE base station loopback BERT

Signal creation software³

- · 3GPP W-CDMA FDD personality
- · cdma2000 and IS-95-A personality
- TDMA personality (GSM, EDGE, GPRS, EGPRS, NADC, PDC, PHS, DECT, TETRA)
- · Calibrated noise (AWGN) personality
- · GPS personality
- · Signal Studio for 1xEV-DO
- · Signal Studio for 1xEV-DV and cdma2000
- · Signal Studio for 802.11 WLAN
- Signal Studio for Bluetooth™
- · Signal Studio for enhanced multitone
- · Signal Studio for HSDPA over W-CDMA
- · Signal Studio for TD-SCDMA (TSM)
- · Signal Studio for noise power ratio (NPR)

Baseband Studio products 4

- N5102A Baseband Studio digital signal interface module
- N5110A Baseband Studio for waveform streaming⁵
- N5115A Baseband Studio for fading⁵
- N5101A Baseband Studio PCI card⁵

System accessories

- 1CP Rack mount kit with handles
- 1CN Front handle kit

- 2. Requires either Option 601 or 602 (baseband generator) to function.
- 3. Requuires Option 001, 002, 601, or 602.
- 4. Agilent's Baseband Studio is a suite of baseband signal applications and accessories that initially work with the E4438C ESG and E8267C PSG vector signal generators to enhance Agilent's signal creation and signal generation tool set. For details visit www.agilent.com/find/basebandstudio.
- 5. Baseband Studio for waveform streaming and for fading both require a PC equipped with the Agilent N5101A Baseband Studio PCI card. The PCI card is not functional as a stand-alone product.

^{1.} All options should be ordered using E4438C-xxx, where the xxx represents the option number. For more information, please refer to the configuration guide publication number 5988-4085EN.

Related Literature

Application literature

- RF Source Basics, a self-paced tutorial (CD-ROM), literature number 5980-2060E.
- Digital Modulation in Communications Systems—An Introduction, Application Note 1298, literature number 5965-7160E.
- Using Vector Modulation Analysis in the Integration, Troubleshooting and Design of Digital Communications Systems, Product Note, literature number 5091-8687E.
- Testing CDMA Base Station Amplifiers, Application Note 1307, literature number 5967-5486E.
- Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and Their Components, Application Note 1312, literature number 5968-2320E.
- Understanding CDMA Measurements for Base Stations and their Components, Application Note 1311, literature number 5968-0953E.
- Testing and Troubleshooting Digital RF Communications Receiver Designs, Application Note 1314, literature number 5968-3579E.
- Signal Generators Vector, Analog, and CW Models, Selection Guide, literature number 5965-3094E.

Product literature

- E4438C ESG Vector Signal Generator, Brochure, literature number 5988-3935EN.
- E4438C ESG Vector Signal Generator, Configuration Guide, literature number 5988-4085EN.
- IntuiLink Software, Data Sheet, literature number 5980-3115EN.

E4438C ESG signal generation firmware personalities

- 3GPP W-CDMA (FDD) Personalities Option 400, Technical Overview, literature number 5988-4449EN
- cdma2000 and IS-95A Personalities Option 401, Technical Overview, literature number 5988-4430EN
- GPS Personality Option 409, Technical Overview, literature number 5988-6256EN
- TDMA Personalities (GSM/EDGE/NADC/PDC/PHS/TETRA/DECT) Option 402, Technical Overview, literature number 5988-4431EN

E4438C ESG Signal Studio software personalities

- Signal Studio for 1xEV-DO Option 404, Technical Overview, literature number 5988-5459EN
- • Signal Studio for 1xEV-DV and cdma2000 - Option 414, Technical Overview, literature number 5988-9123EN
- Signal Studio for 802.11 WLAN Option 417, Technical Overview, literature number 5988-8618EN
- Signal Studio for Bluetooth Option 406, Technical Overview, literature number 5988-5458EN
- Signal Studio for Enhanced Multitone Option 408, Technical Overview, literature number 5988-5639EN
- Signal Studio for Noise Power Ratio Option 421, Technical Overview, literature number 5988-6552EN
- Signal Studio for TD-SCDMA (TSM) Option 411, Technical Overview, literature number 5988-6552EN

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and applications you select.

See the ESG Web page for the latest information

Get the latest news, product and support information, application literature, firmware upgrades and more. Agilent's Internet address for the ESG is:

www.agilent.com/find/esg

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent T&M Software and Connectivity

Agilent's Test and Measurement software and connectivity products, solutions and developer network allows you to take time out of connecting your instruments to your computer with tools based on PC standards, so you can focus on your tasks, not on your connections. Visi

www.agilent.com/find/connectivity

for more information.

By internet, phone, or fax, get assistance with all your test & measurement needs

Phone or Fax **United States:** (tel) (82 2) 2004 5004 (tel) 800 452 4844 (fax) (82 2) 2004 5115 Canada: Latin America: (tel) 877 894 4414 (tel) (305) 269 7500 (fax) 905 282 6495 (fax) (305) 269 7599 China: Taiwan: (tel) 0800 047 866 (tel) 800 810 0189 (fax) 800 820 2816 (fax) 0800 286 331 Other Asia Pacific Europe: (tel) (31 20) 547 2323 Countries: (tel) (65) 6375 8100 (fax) (31 20) 547 2390 Japan: (fax) (65) 6836 0252 (tel) (81) 426 56 7832 Email:

Online Assistance: www.agilent.com/find/assist

(fax) (81) 426 56 7840

Product specifications and descriptions in this document subject to change without notice.

tm asia@agilent.com

© Agilent Technologies, Inc. 2002, 2003, 2004 Printed in USA, January 14, 2004 5988-4039FN

